ACADEMIC SESSION: 2024-25 (Winter-2024)

Discip	line : ELECTRICA		C		
		LENGINEERING	: 3RD	Name of the Teaching Faculty : Sarada Nayak ,Sr Lecturer(Math),Govt. Polyter Sonepur	Kumar chnic,
				THEORY	
Subjec	t : ENGG.MATH	-111	Semester	rom date: 1/07/2024 to 08/11/2024	
MEEN			No. of wee	eks :-18 (excluding holidays)	
WEEK	No.of classes/week 04	CHAPTER	THEORY		N0.OF PERIODS
1st	lst	Complex Numbers	Introductio numbers	n to the subject, Real and Imaginary	1
Disciplin Subject WEEK 1st 2nd 3rd 4th	2nd		Complex nu Modulus ar	imbers, Conjugate complex numbers, id Amplitude of a complex number.	1
	3rd		Geometrica	I representation of complex numbers.	1
	4th		Properties of	of Complex Numbers	1
2nd	lst		Determinat properties.	ion of cube roots of unity and their	1
	2nd		De-Moivre'	s Theorem and applications	1
	3rd		Problem Pra	actice & Class Test	1
	4th	Matrices	Define Rank	of a Matrix	1
3rd	1st				1
	2nd		Elementary of a matrix.	row transformations to determine the rank	1
	3rd		Rouche's th equations ir	eorem for consistency of a system of linear	1
	4th		Solve equat	ions in three unknowns testing consistency.	1
4th	1st	Linear Differential Equations.	Homogeneo Differential examples.	ous and Non-Homogeneous Linear Equations with constant coefficients with	1
	2nd		General soluterms of C.F	ution of linear Differential Equations in . and P.I.	1
	3rd		Rules for fir	nding C.F. and P.I. in terms of operator D.	1
	4th	_	Problem Pra	ctice	1
F .1	1st		Partial Diffe	rential Equation(P.D.E.)	1
5th	2nd		Formation o	f Partial Differential Equation by arbitrary functions	1
	3rd		Problem Pra	ctice	1
	4th		Partial Diffe	rential Equation of the form Pp+Qq=R	1
6th	1st		Problem Pra	ctice & Class Test	1

			a cristian and	
	2nd		Define Gamma function and Gamma of $(n+1)=n!$ and Gamma of $\%$ =square root of π	. 1
	3rd	54 54 J	Define Laplace Transform of a function f(t) and inverse	1
	4th	Laplace Transforms	L.T. of standard functions and explain existence conditions of L.T.	1
th	1.ct		Explain linear, shifting property of L.T.	1
.11	2nd		Formulate L. T. of derivatives, integrals, multiplication by t ^a and division by t.	1
	3rd		Illustrative Examples, Problem Practice.	1
	4th		Derive Formulae of inverse L.T. and explain method of partial fractions.	1
th	1st		Illustrative Examples, Problem Practice.	1
	2nd		Derive Formulae of inverse L.T. and explain method of partial fractions	1
	3rd		Problem Practice.	1
	4th		Define periodic functions	1
th	1st		Dirichlet's condition for the Fourier Series expansion of a function and it's convergence.	1
	2nd	Fourier Series	Continue, Problem Practice	1
	3rd		Express periodic function(x) satisfying Dirichlet's conditions as a Fourier series.	1
	4th		Problem Practice	1
0th	1st		Euler's Formula	1
e çi i	2nd		Doubt clearing, Problem practice.	1
	3rd		Even and Odd functions and Fourier series in $(0 \le x \le 2\pi)$ and $-\pi \le x \le \pi$	1
	4th		Continue	1
1th	1st	-	Obtain F.S. of continuous functions and functions having points of discontinuity in $(0 \le x \le 2\pi \text{ and } -\pi \le x \le \pi)$	1
	2nd		continue	1
	3rd		Problem Practice	1
	4th		Problem Practice	1
2th	1st		Problem Practice	1
	2nd		Problem Practice	1
	3rd		Class Test	1
	4th	Numerical	Appraise limitation of analytical methods of solution of algebraic equations.	1
3th	1st	Methods.	Iterative formula for finding the solutions of algebraic equations by Bisection method.	1
	2nd ·		Newton Raphson method	1
	2.4		Problem Practice, Doubt Clearing	1

.

	4th		Problem Practice, Doubt Clearing,	1
1 444	1.01	Einita difforence	Problem Practice & Class Test	1
14[[]	2nd	and interpolation	Explain finite difference and form table of forward and	1
	3rd		Define shift operator(\pounds) and relation between shift	1
			Operation & difference op a	1
	4th		Problem Practice	1
15th	1st		Problem Practice	1
	2nd ard		Explain finite difference and form table of forward and	1
	510		backward difference Define shift operator(£) and relation between shift	1
	4th		operator & difference operator.	1
164	1 ct		Problem Practice	1
16th	1st 2pd		Problem Practice	1
	2110		Problem Practice	1
	31U 4+b		Problem Practice & Class Test	1
4 7 4	4(1)	Numerical Integration	Newton's forward and backward interpolation	
17th	150		for equal intervals.	1
	2 n d		Problem Practice	1
	Zhu		Lagrange's interpolation formula for unequal meeting	1
	3ra		Problem practice	1
	4th		Numerical integration, Newton's cote's formula ;	
18th	1st		Trapezoidal rule.	1
			Problem Practice	1
	2nd		Simpson's 1/3 rd rule, problem practice.	1
	3rd		Problem Practice	77
	4th			12

Prepared By Sarada Kumar Nayak Sr. Lect. (Math), GP Sonepur.

PT .

Electrical Engineering, GP Sonepur.

Academic Coordinator GP Sonepur.